
Basic usecases for DVCS: Workflow
Failures

Arne Babenhauserheide

April 17, 2013

Contents

1 Intro 2

2 Git 2
2.1 Setup the test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Simplest case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Get the repo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Hack a bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Push it back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 With testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Test something . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Push it back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Wrapup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Mercurial 9
3.1 Setup the test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Simplest case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Get the repo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Hack a bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Push it back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 With testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Test something . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Push it back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Wrapup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



4 Summary 15
4.1 Visually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Subversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Mercurial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.3 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 Intro

I recently tried contributing to a new project again, and I was quite surprised which
hurdles can be in your way, when you did not setup your environment, yet.
So I decided to put together a small test for the basic workflow: Cloning a project,

doing and testing a change and pushing it back.
I did that for Git and Mercurial, because both break at different points.
I’ll express the basic usecase in Subversion:

• svn checkout [project]

• (hack, test, repeat)

• (request commit rights)

• svn commit -m “added X”

You can also replace the request for commit rights with creating a patch and sending
it to a mailing list. But let’s take the easiest case of a new contributor who is directly
welcomed into the project as trusted committer.

A slightly more advanced workflow adds testing in a clean tree. In Subversion it looks
almost like the simple commit:

2 Git

Let’s start with Linus’ DVCS. And since we’re using a DVCS, let’s also try it out in real
life

2



2.1 Setup the test

LC_ALL=C
LANG=C
PS1="$"
rm -rf /tmp/gitflow > /dev/null
mkdir -p /tmp/gitflow > /dev/null
cd /tmp/gitflow > /dev/null
# init the repo
git init orig > /dev/null
cd orig > /dev/null
echo 1 > 1
# add a commit
git add 1 > /dev/null
git config user.name upstream > /dev/null
git config user.email up@stream > /dev/null
git commit -m 1 > /dev/null
# checkout another branch but master. YES, YOU SHOULD DO THAT on the shared repo. We\T1\textquoteright ll see later, why.
git checkout -b never-pull-this-temporary-useless-branch master 2> /dev/null
cd .. > /dev/null
echo # purely cosmetic and implementation detail: this adds a new line to the output
ls

$$$$$$$$$$$$$$$$$
orig

git --version

git version 1.8.1.5

2.2 Simplest case

2.2.1 Get the repo

First I get the repo
git clone orig mine
echo $ ls
ls

Cloning into ’mine’...
done.
$ ls
mine orig

3



2.2.2 Hack a bit

cd mine
echo 2 > 1
git commit -m "hack"

$# On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: 1
no changes added to commit (use "git add" and/or "git commit -a")

ARGL. . . but let’s paste the commands into the shell. I do not use –global, since I do
not want to shoot my test environment here.
git config user.email "contributor"
git config user.name "con@tribut.or"

and try again
git commit -m "hack"

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: 1
no changes added to commit (use "git add" and/or "git commit -a")

ARGL. . . well, paste it in again. . .
git add 1
git commit -m "hack"

[master 28b541b] hack
1 file changed, 1 insertion(+), 1 deletion(-)

Finally I managed to commit my file. Now, let’s push it back.

4



2.2.3 Push it back

git push

warning: push.default is unset; its implicit value is changing in
Git 2.0 from ’matching’ to ’simple’. To squelch this message
and maintain the current behavior after the default changes, use:

git config --global push.default matching

To squelch this message and adopt the new behavior now, use:

git config --global push.default simple

See ’git help config’ and search for ’push.default’ for further information.
(the ’simple’ mode was introduced in Git 1.7.11. Use the similar mode
’current’ instead of ’simple’ if you sometimes use older versions of Git)

Counting objects: 5, done.
(1/3)
Writing objects: 66% (2/3)
Writing objects: 100% (3/3)
Writing objects: 100% (3/3), 222 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
To /tmp/gitflow/orig
master

HA! It’s in.

2.2.4 Overview

In short the required commands look like this:

• git clone orig mine

• cd mine; (hack)

• git config user.email “contributor”

• git config user.name “con@tribut.or”

• git add 1

• git commit -m “hack”

• (request permission to push)

5



• git push

compare Subversion:

Now let’s see what that initial setup with setting a non-master branch was about. . .

2.3 With testing

2.3.1 Test something

I want to test a change and ensure, that it works with a fresh clone. So I just clone my
local repo and commit there.
cd ..
git clone mine test
cd test
# setup the user locally again. Normally you do not need that again, since you\T1\textquoteright d use --global.
git config user.email "contributor"
git config user.name "con@tribut.or"
# hack and commit
echo test > 1
git add 1
echo # cosmetic
git commit -m "change to test" >/dev/null
# (run the tests)

2.3.2 Push it back

git push

warning: push.default is unset; its implicit value is changing in
Git 2.0 from ’matching’ to ’simple’. To squelch this message
and maintain the current behavior after the default changes, use:

git config --global push.default matching

To squelch this message and adopt the new behavior now, use:

6



git config --global push.default simple

See ’git help config’ and search for ’push.default’ for further information.
(the ’simple’ mode was introduced in Git 1.7.11. Use the similar mode
’current’ instead of ’simple’ if you sometimes use older versions of Git)

Counting objects: 5, done.
(1/3)
Writing objects: 66% (2/3)
Writing objects: 100% (3/3)
Writing objects: 100% (3/3), 234 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: error: refusing to update checked out branch: refs/heads/master
remote: error: By default, updating the current branch in a non-bare repository
remote: error: is denied, because it will make the index and work tree inconsistent
remote: error: with what you pushed, and will require ’git reset --hard’ to match
remote: error: the work tree to HEAD.
remote: error:
remote: error: You can set ’receive.denyCurrentBranch’ configuration variable to
remote: error: ’ignore’ or ’warn’ in the remote repository to allow pushing into
remote: error: its current branch; however, this is not recommended unless you
remote: error: arranged to update its work tree to match what you pushed in some
remote: error: other way.
remote: error:
remote: error: To squelch this message and still keep the default behaviour, set
remote: error: ’receive.denyCurrentBranch’ configuration variable to ’refuse’.
To /tmp/gitflow/mine
master (branch is currently checked out)
error: failed to push some refs to ’/tmp/gitflow/mine’

Uh. . . what? If I were a real first time user, at this point I would just send a patch. . .
The simple local test clone does not work: You actually have to also checkout a different

branch if you want to be able to push back (needless duplication of information - and
effort). And it actually breaks this simple workflow.
(experienced git users will now tell me that you should always checkout a work branch.

But that would mean that I would have to add the additional branching step to the
simplest case without testing repo, too, raising the bar for contribution even higher)

git checkout -b testing master
git push ../mine testing

Switched to a new branch ’testing’
Counting objects: 5, done.

7



(1/3)
Writing objects: 66% (2/3)
Writing objects: 100% (3/3)
Writing objects: 100% (3/3), 234 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
To ../mine
testing

Since I only pushed to mine, I now have to go there, merge and push.
cd ../mine
git merge testing
git push

Updating 28b541b..6994390
Fast-forward
1 | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

warning: push.default is unset; its implicit value is changing in
Git 2.0 from ’matching’ to ’simple’. To squelch this message
and maintain the current behavior after the default changes, use:

git config --global push.default matching

To squelch this message and adopt the new behavior now, use:

git config --global push.default simple

See ’git help config’ and search for ’push.default’ for further information.
(the ’simple’ mode was introduced in Git 1.7.11. Use the similar mode
’current’ instead of ’simple’ if you sometimes use older versions of Git)

Counting objects: 5, done.
(1/3)
Writing objects: 66% (2/3)
Writing objects: 100% (3/3)
Writing objects: 100% (3/3), 234 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
To /tmp/gitflow/orig
master

2.3.3 Overview

In short the required commands for testing look like this:

8



• git clone mine test

• cd test; (hack)

• git add 1

• git checkout -b testing master

• git commit -m “hack”

• git push ../mine testing

• cd ../mine

• git merge testing

• git push

Compare to Subversion

2.4 Wrapup

The git workflows broke at several places:
Simplest:

• Set the username (minor: it’s just pasting shell commands)

• Add every change (==staging. Minor: paste shell commands again - or use ‘commit
-a‘)

Testing clone (only additional breakages):

• Cannot push to the local clone (major: it spews about 20 lines of error messages
which do not tell me how to actually get my changes into the local clone)

• Have to use a temporary branch in a local clone to be able to push back (annoyance:
makes using clean local clones really annoying).

3 Mercurial

Now let’s try the same

9



3.1 Setup the test

LC_ALL=C
LANG=C
PS1="$"
rm -rf /tmp/hgflow > /dev/null
mkdir -p /tmp/hgflow > /dev/null
cd /tmp/hgflow > /dev/null
# init the repo
hg init orig > /dev/null
cd orig > /dev/null
echo 1 > 1 > /dev/null
# add a commit
hg add 1 > /dev/null
hg commit -u upstream -m 1 > /dev/null
cd .. >/dev/null
echo # purely cosmetic and implementation detail: this adds a new line to the output
ls

$$$$$$$$$$$$$
orig

hg --version

Mercurial Distributed SCM (version 2.5.2)
(see http://mercurial.selenic.com for more information)

Copyright (C) 2005-2012 Matt Mackall and others
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

3.2 Simplest case

3.2.1 Get the repo

hg clone orig mine
echo $ ls
ls

updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ ls
mine orig

10



3.2.2 Hack a bit

cd mine
echo 2 > 1
echo
# I disable the username to show the problem
hg --config ui.username= commit -m "hack"

$
$abort: no username supplied (see "hg help config")

ARGL, what???
Well, let’s do what it says (but only see the first 30 lines to avoid blowing up this

example):

hg help config | head -n 30 | grep -B 3 -A 1 per-repository

These files do not exist by default and you will have to create the
appropriate configuration files yourself: global configuration like the

USERPROFILE%\mercurial.ini" or
HOME/.hgrc" and local configuration is put into the per-repository
/.hg/hgrc" file.

Are you serious??? I have to actually read a guide just to commit my change??? As
normal user this would tip my frustration with the tool over the edge and likely get me
to just send a patch. . .
But I am no normal user, since I want to write this guide. So I assume a really patient

user, who does the following (after reading for 3 minutes):

echo ’[ui]
username = "contributor"’ >> .hg/hgrc

and tries again:
hg commit -m "hack"

Now it worked. But this is MAJOR BREAKAGE.

3.2.3 Push it back

hg push

pushing to /tmp/hgflow/orig
searching for changes
adding changesets

11



adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

Done. This was easy, and I did not get yelled at (different from the experience with
git :) ).

3.2.4 Overview

In short the required commands look like this:

• hg clone orig mine

• cd mine; (hack)

• hg help config ; (read) ; echo ‘[ui]

username = “contributor” ’ » .hg/hgrc (are you serious?)

• hg commit -m “hack”

• (request permission to push)

• hg push

Compare to Subversion

and to git

12



3.3 With testing

3.3.1 Test something

cd ..
hg clone mine test
cd test
# setup the user locally again. Normally you do not need that again, since you\T1\textquoteright d use --global.
echo ’[ui]
username = "contributor"’ >> .hg/hgrc
# hack and commit
echo test > 1
echo # cosmetic
hg commit -m "change to test"
# (run the tests)

updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$$> $$$

3.3.2 Push it back

hg push

pushing to /tmp/hgflow/mine
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

It’s in mine now, but I still need to push it from there.
cd ../mine
hg push

pushing to /tmp/hgflow/orig
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

13



Done.
If I had worked on mine in the meantime, I would have to merge there, too - just as

with git with the exception that I would not have to give a branch name. But since we’re
in the simplest case, we don’t need to do that.

3.3.3 Overview

In short the required commands for testing look like this:

• hg clone mine test

• cd test; (hack)

• hg commit -m “hack”

• hg push ../mine

• cd ../mine

• hg push

Compare to Subversion

and to git

3.4 Wrapup

The Mercurial workflow broke only ONCE, but there it broke HARD: To commit you
actually have to READ THE HELP PAGE on config to find out how to set your username.
So, to wrap it up: ARE YOU SERIOUS?
That’s a really nice workflow, disturbed by a devastating user experience for just one

of the commands.
This is a place where hg should learn from git: The initial setup must be possible from

the commandline, without reading a help page and without changing to an editor and
then back into the commandline.

14



4 Summary

• Git broke at several places, and in one place it broke hard: Pushing between local
clones is a huge hassle, even though that should be a strong point of DVCSs.

• Mercurial broke only once, but there it broke hard: Setting the username actually
requires reading help output and hand-editing a text file.

Also the workflows for a user who gets permission to push always required some addi-
tional steps compared to Subversion.
One of the additional steps cannot be avoided without losing offline-commits (which

are a major strength of DVCS), because those make it necessary to split svn commit into
commit and push: That separates storing changes from sharing them.
But git actually requires additional steps which are only necessary due to implemen-

tation details of its storage layer: Pushing to a repo with the same branch checked out
is not allowed, so you have to create an additional branch in your local clone and merge
it in the other repo, even if all your changes are siblings of the changes in the other
repository, and it requires either a flag to every commit command or explicit adding of
changes. That does not amount to the one unavoidable additional command, but actu-
ally further three commands, so the number of commands to get code, hack on it and
share it increases from 5 to 9. And if you work in a team where people trust you to write
good code, that does not actually reduce the required effort to share your changes.
On the other hand, both Mercurial and Git allow you to work offline, and you can do

as many testing steps in between as you like, without needing to get the changes from
the server every time (because you can simply clone a local repo for that).

4.1 Visually

4.1.1 Subversion

4.1.2 Mercurial

4.1.3 Git

15


	Intro
	Git
	Setup the test
	Simplest case
	Get the repo
	Hack a bit
	Push it back
	Overview

	With testing
	Test something
	Push it back
	Overview

	Wrapup

	Mercurial
	Setup the test
	Simplest case
	Get the repo
	Hack a bit
	Push it back
	Overview

	With testing
	Test something
	Push it back
	Overview

	Wrapup

	Summary
	Visually
	Subversion
	Mercurial
	Git



