
What I need from IntelliJ and what I deeply
miss when I’m not using Emacs

Dr. Arne Babenhauserheide

<2019-10-28 Mo>

At work I’m using IntelliJ for Java development, but I’m not happy with
the interface. It forces me out of my concentration and regularly breaks my
flow by having stuff jump around and stealing focus.

But I cannot switch to something that works better for me, because there
are features of IntelliJ that I require to work efficiently.

Update: I also need ëxtract interface and replace all usageänd data flow
analysis.

What I really need from IntelliJ
• inspection

– Where is this called? — all callers

– Where is this implemented? Where is it declared? Or overridden?

– Visual indicator whether a method is overridden or whether it
overrides

– Where is this defined (base method or concrete method)?

– Which Symbol with “these letters” is available for use here? Add
imports as necessary.

• refactor

– rename symbol,

– change signature (with base method and overrides and callers),

1



– extract method from selection,

– extract variable / store selected expression in variable

– extract interface and replace all possible usages of the class with
the interface.

• run

– Run tests in changed modules or in file

– re-run test, restart current program

– re-build incrementally

– hot-swap without restart

• debug

– set breakpoint and see breakpoints, set conditional breakpoint

– run project via eclipse run config main method (we replaced the
eclipse stuff extracted with Eclipser by main methods)

– inspect stack and state at break point

– step over / in / out / continue

– Where does the value from this variable come from (data flow
analysis)

• other

– Jump to definition / caller (also with mouse CTRL-click), even
for xml, so colleagues can do it when working at the same box

– show all methods in file

– VCS: ignore changes in some files

– run Sonar Qube on changed files

What I deeply miss when not using Emacs
• keyboard shortcuts

– mnemnonic keybindings: When I type C-x r t, I thing x-rectacngle-
text. That is why it works accross different keyboard layouts.

2



– staying on the letter row.

– ad-hoc shortcuts limited to the current file with local-bind-key.

• editing

– killing to the end of the line with C-k (I actually added that to
IntelliJ now)

– cycling through the cut-paste list with M-y: Often I don’t need
the last kill, but the one before. Yes, I can reach for the mouse and
use klipper, but that slows me down and breaks my concentration.
——— C-S-v in IntelliJ uses paste from history

– storing and retrieving multiple values with registers.

– Completion which replaces the suffic, or at least M-d (Alt-d): kill
world or rest of word. ——— You can remap Alt-d in IntelliJ
to kill to word end

– Activate selection mark, navigate, kill all code in-between mark
and current point. The Emacs live plugin is close, but not good
enough.

• windows

– Commands with M-x, fuzzy matched, and without settings-window-
names getting in the way. I half-ways replace that with C-S-a

– closing other windows with x1 (actual "x1thanks to key-chords-
mode). Deeper: Natural use of multiple windows.

– storing a window configuration in a register and retrieving it later

– Truly having two windows side-by-side with two points and swit-
ching with xo or xö (C-x o).

• files

– Fuzzy matching in buffer-list with bf (as chord or with C-x b).

• interop

– Linking to code files from my org-mode planning file.

• movement

3



– dumb-jump to test

– Navigation with C-n / C-p / M-b / M-f. That avoids having to
move to the arrow keys.

– back to last edit which stays in the buffer. I can switch between
buffers with bf, and after I just want to go back to where I last
edited this buffer. Multi-file back-to-last-change is also nice (as
IntelliJ provides it), but it’s not complete.

• Feeling fast

– Somehow all the things I need to do in IntelliJ feel slow. Maybe
that’s because a million lines of code is a lot. Maybe because it
keeps a huge amount of state. Or because Maven is slow. But it
feels like I’m regularly waiting for something to refresh itself.

– IntelliJ feels slow, because it often opens dialogs before they accept
keyboard input. To reproduce: start a global search (with CTRL-
shift-F) and start typing. It misses my first keystrokes. Emacs
takes all keystrokes.

• other

– Having the shell just an M-! away, in the same folder as the code
file.

– ripgrep

– A colleague said today “I wish we had tabs grouped by type”. I
could not suppress saying “emacs does this — with tabbar-mode”.

– Inline merge-conflict highlighting (I actually switch from IntelliJ
to Emacs for that).

– glasses-mode to highlight capital letters in camelCase.

4


